Role of pendrin in iodide balance: going with the flow.

نویسندگان

  • Young Hee Kim
  • Truyen D Pham
  • Wencui Zheng
  • Seongun Hong
  • Christine Baylis
  • Vladimir Pech
  • William H Beierwaltes
  • Donna B Farley
  • Lewis E Braverman
  • Jill W Verlander
  • Susan M Wall
چکیده

Pendrin is expressed in the apical regions of type B and non-A, non-B intercalated cells, where it mediates Cl(-) absorption and HCO3(-) secretion through apical Cl(-)/HCO3(-) exchange. Since pendrin is a robust I(-) transporter, we asked whether pendrin is upregulated with dietary I(-) restriction and whether it modulates I(-) balance. Thus I(-) balance was determined in pendrin null and in wild-type mice. Pendrin abundance was evaluated with immunoblots, immunohistochemistry, and immunogold cytochemistry with morphometric analysis. While pendrin abundance was unchanged when dietary I(-) intake was varied over the physiological range, I(-) balance differed in pendrin null and in wild-type mice. Serum I(-) was lower, while I(-) excretion was higher in pendrin null relative to wild-type mice, consistent with a role of pendrin in renal I(-) absorption. Increased H2O intake enhanced differences between wild-type and pendrin null mice in I(-) balance, suggesting that H2O intake modulates pendrin abundance. Raising water intake from approximately 4 to approximately 11 ml/day increased the ratio of B cell apical plasma membrane to cytoplasm pendrin label by 75%, although circulating renin, aldosterone, and serum osmolality were unchanged. Further studies asked whether H2O intake modulates pendrin through the action of AVP. We observed that H2O intake modulated pendrin abundance even when circulating vasopressin levels were clamped. We conclude that H2O intake modulates pendrin abundance, although not likely through a direct, type 2 vasopressin receptor-dependent mechanism. As water intake rises, pendrin becomes increasingly critical in the maintenance of Cl(-) and I(-) balance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Role for Iodide and Thyroglobulin in Modulating the Function of Human Immune Cells

Iodine is an essential element required for the function of all organ systems. Although the importance of iodine in thyroid hormone synthesis and reproduction is well known, its direct effects on the immune system are elusive. Human leukocytes expressed mRNA of iodide transporters (NIS and PENDRIN) and thyroid-related proteins [thyroglobulin (TG) and thyroid peroxidase (TPO)]. The mRNA levels o...

متن کامل

Iodide excess regulates its own efflux: a possible involvement of pendrin.

Adequate iodide supply and metabolism are essential for thyroid hormones synthesis. In thyrocytes, iodide uptake is mediated by the sodium-iodide symporter, but several proteins appear to be involved in iodide efflux. Previous studies demonstrated that pendrin is able to mediate apical efflux of iodide in thyrocytes. Acute iodide excess transiently impairs thyroid hormone synthesis, a phenomeno...

متن کامل

Controversies concerning the role of pendrin as an apical iodide transporter in thyroid follicular cells.

Pendred syndrome is an autosomal recessive disorder defined by sensorineural deafness, goiter and a partial organification defect of iodide. It is caused by biallelic mutations in the multifunctional anion transporter pendrin/SLC26A4. In human thyroid tissue, pendrin is localized at the apical membrane of thyroid follicular cells. The clinical phenotype of patients with Pendred syndrome and the...

متن کامل

Pendrin and sodium/iodide symporter protein expression in the testicular tissue of normal and diabetic rats in prepubertal and post pubertal stages

Pendrin (PDS) and sodium/iodide symporter (NIS) are transmembrane proteins that are located in numerous tissue types, particularly thyroid follicular epithelial cells, where they are entrusted with the regulation of iodine molecules. In the present study, we aimed to clarify changes in PDS and NIS protein expression, in the testicular tissue of prepubertal and <span la...

متن کامل

Minireview: The sodium-iodide symporter NIS and pendrin in iodide homeostasis of the thyroid.

Thyroid hormones are essential for normal development and metabolism. Thyroid hormone biosynthesis requires iodide uptake into the thyrocytes and efflux into the follicular lumen, where it is organified on selected tyrosyls of thyroglobulin. Uptake of iodide into the thyrocytes is mediated by an intrinsic membrane glycoprotein, the sodium-iodide symporter (NIS), which actively cotransports two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 297 4  شماره 

صفحات  -

تاریخ انتشار 2009